Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Krzysztof Ejsmont

Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland

Correspondence e-mail: eismont@uni.opole.pl

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.003 Å R factor = 0.039 wR factor = 0.116 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The structure of the title compound, $C_4H_{12}N^+ \cdot C_2HO_4^-$, consists of discrete oxalate monoanions and diethylammonium cations. The N atom lies on a crystallographic twofold rotation axis and the oxalate ion is centrosymmetric. The oxalate monoanions are present as hydrogen-bonded linear chains. Conformationally extended diethylammonium cations link the linear chains through three–centre N–H···O hydrogen bonds.

Diethylammonium hydrogen oxalate

Comment

The study of amine oxalates demonstrates the occurrence of different types of supramolecular structures arising from hydrogen bonds (MacDonald *et al.*, 2001; Vaidhyanathan *et al.*, 2001, 2002; Ejsmont & Zaleski, 2006*a*,*b*).

The crystal structure of the title compound, (I), shows the presence of conformationally extended diethylammonium cations (the values of torsion angles are close to 180° ; Table 1) and oxalate monoanions (Fig. 1). The complete cation is generated by a twofold rotation axis, with atom N3 lying on the axis. Its geometry is normal and compares well with those found in other crystal structures which include this cation (Castellari *et al.*, 2001; Bolte *et al.*, 2003; Emsley *et al.*, 1986;

© 2007 International Union of Crystallography All rights reserved

Acta Cryst. (2007). E63, o107-o109

Received 30 November 2006 Accepted 30 November 2006

Ishida & Kashino, 2000). The centrosymmetric oxalate monoanion in (I) is exactly planar. The difference in the C4-O1 and C4-O2 bond distances (0.053 Å, Table 1) clearly indicates that O1 of the carboxylate group is protonated.

In the crystal structure of (I), there is a linear $O-H \cdots O$ hydrogen bond between the oxalate monoanions, which can be identified as a very strong interaction (Steiner, 2002). The H atom in this interaction is located on a centre of inversion, resulting in equal donor-hydrogen and hydrogen-acceptor distances. This O-H···O hydrogen bond generates linear oxalate chains with an $O1 \cdots O1^{i}$ distance of 2.452 (1) Å (Table 2). The $O \cdots O$ distance in this interaction is shorter than that observed for O-H···O hydrogen bonds formed between the monoanionic oxalate units in the structures of amine oxalates (MacDonald et al., 2001; Vaidhyanathan et al., 2001, 2002; Ejsmont & Zaleski, 2006*a*,*b*). As can be seen from the packing diagram of (I), the monohydrogen oxalate linear chains run parallel to the b axis, with the diethylammonium cations between the chains (Fig. 2). The anion chains and diethylammonium cations are held together by three-centre $N-H\cdots O$ hydrogen bonds (Table 2).

Experimental

Crystals of (I) were grown at room temperature by slow evaporation of an aqueous solution containing diethylamine and oxalic acid in a 2:1 stoichiometric ratio.

Crystal data

$C_4H_{12}N^+ \cdot C_2HO_4^-$	Z = 2
$M_r = 163.17$	$D_x = 1.158 \text{ Mg m}^{-3}$
Monoclinic, $P2/c$	Mo $K\alpha$ radiation
a = 7.0527 (4) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 5.5465 (2) Å	T = 298 (1) K
c = 14.0317 (6) Å	Block, colourless
$\beta = 121.544 \ (4)^{\circ}$	$0.39 \times 0.37 \times 0.36 \text{ mm}$
V = 467.78 (4) Å ³	

Data collection

Oxford Diffraction Xcalibur diffractometer ω scans Absorption correction: none 2852 measured reflections

Refinement

 $\begin{array}{ll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_o^2) + (0.0778P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.039 & w \mbox{erg} + 0.1154P] \\ wR(F^2) = 0.117 & w \mbox{here } P = (F_o^2 + 2F_c^2)/3 \\ S = 1.09 & (\Delta/\sigma)_{\rm max} < 0.001 \\ 872 \mbox{ reflections } & \Delta\rho_{\rm max} = 0.15 \mbox{ e } {\rm \AA}^{-3} \\ 56 \mbox{ parameters } & \Delta\rho_{\rm min} = -0.17 \mbox{ e } {\rm \AA}^{-3} \\ \mbox{H atoms treated by a mixture of independent and constrained } \end{array}$

refinement

Table 1

Selected geometric parameters (Å, °).

Symmetry code: (i) $-x + 1, y, -z + \frac{1}{2}$.						
C5 ⁱ -N3-C5-C6	175.9 (2)					
O1-C4	1.268 (2)	O2-C4	1.215 (2)			

872 independent reflections

744 reflections with $I > 2\sigma(I)$

 $\begin{aligned} R_{\rm int} &= 0.014\\ \theta_{\rm max} &= 25.5^\circ \end{aligned}$

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$01 - H1 \cdots O1^{ii}$ N3 - H3 · · · O1	1.23 (1) 0.91 (2)	1.23 (1) 2.42 (2)	2.452 (1) 3.0231 (9)	180 123 (2)
$N3-H3\cdots O2^{iii}$	0.91 (2)	2.01 (2)	2.894 (2)	163 (2)

Symmetry codes: (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 1, -y, -z + 1.

H atoms bonded to C were refined with fixed individual displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C) \text{ or } 1.5U_{eq}(\text{methyl C})]$ using a riding model, with C-H = 0.97 Å for methylene or 0.96 Å for methyl H atoms. H atoms bonded to O and N atoms were freely refined; since the H atom bonded to O is located on a crystallographic centre of inversion, its coordinates were not refined.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2002); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL97*.

References

- Bolte, M., Panisch, R. & Müller, T. (2003). Acta Cryst. E59, 0929-0930.
- Castellari, C., Comelli, F. & Ottani, S. (2001). Acta Cryst. C57, 437-438.
- Ejsmont, K. & Zaleski, J. (2006a). Acta Cryst. E62, o2512-o2513.
- Ejsmont, K. & Zaleski, J. (2006b). Acta Cryst. E62, 03879-03880.
- Emsley, J., Freeman, N. J., Parker, R. J., Dawes, H. M. & Hursthouse, M. B. (1986). J. Chem. Soc. Perkin Trans. 1, pp. 471–473.
- Ishida, H. & Kashino, S. (2000). Acta Cryst. C56, e202-e204.
- MacDonald, J. C., Doeewstein, C. P. & Pilley, M. M. (2001). Cryst. Grow. Des. 1, 29–38.
- Oxford Diffraction (2002). CrysAlis CCD. Version 1.171. Oxford Diffraction, Wrocław, Poland.
- Oxford Diffraction (2006). CrysAlis RED. Version 1.171.31.5. Oxford Diffraction, Wrocław, Poland.
- Sheldrick, G. M. (1990). *SHELXTL*. Siemens Analytical X-ray Instrument Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.

- Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2001). J. Chem. Soc. Dalton Trans. pp. 699–706.
- Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123–133.